An annular gap acceleration model for $\gamma$-ray emission of pulsars

G. J. Qiao, K. J. Lee, B. Zhang, H. G. Wang and R. X. Xu
Arxiv ID: 0704.3801Last updated: 6/3/2020
If the binding energy of the pulsar's surface is not so high (the case of a neutron star), both the negative and positive charges will flow out freely from the surface of the star. The annular free flow model for $\gamma$-ray emission of pulsars is suggested in this paper. It is emphasized that: (1). Two kinds of acceleration regions (annular and core) need to be taken into account. The annular acceleration region is defined by the magnetic field lines that cross the null charge surface within the light cylinder. (2). If the potential drop in the annular region of a pulsar is high enough (normally the cases of young pulsars), charges in both the annular and the core regions could be accelerated and produce primary gamma-rays. Secondary pairs are generated in both regions and stream outwards to power the broadband radiations. (3). The potential drop in the annular region grows more rapidly than that in the core region. The annular acceleration process is a key point to produce wide emission beams as observed. (4). The advantages of both the polar cap and outer gap models are retained in this model. The geometric properties of the $\gamma$-ray emission from the annular flow is analogous to that presented in a previous work by Qiao et al., which match the observations well. (5). Since charges with different signs leave the pulsar through the annular and the core regions, respectively, the current closure problem can be partially solved.

PaperStudio AI Chat

I'm your research assistant! Ask me anything about this paper.

Related papers

Commercial Disclosure
© 2023 Paper Studio™. All Rights Reserved.