Horizontal Branch Stars and the Ultraviolet Universe

M. Catelan (PUC-Chile)
Arxiv ID: 0708.2445Last updated: 8/5/2020
Extremely hot horizontal branch (HB) stars and their progeny are widely considered to be responsible for the "ultraviolet upturn" (or UVX) phenomenon observed in elliptical galaxies and the bulges of spirals. Yet, the precise evolutionary channels that lead to the production of these stars remain the source of much debate. In this review, we discuss two key physical ingredients that are required in order for reliable quantitative models of the UV output of stellar populations to be computed, namely, the mass loss rates of red giant branch stars and the helium enrichment "law" at high metallicities. In particular, the recent evidence pointing towards a strong enhancement in the abundances of the alpha-elements in the Galactic bulge (compared to the disk), and also the available indications of a similar overabundance in (massive) elliptical galaxies, strongly suggest that the helium abundance Y may be higher in ellipticals and bulges than it is in spiral disks by an amount that may reach up to 0.15 at [Fe/H] ~ +0.5. If so, this would strongly favor the production of hot HB stars at high metallicity in galactic spheroids. We also discuss the existence of mass loss recipes beyond the commonly adopted Reimers "law" that are not only more consistent with the available empirical data, but also much more favorable to the production of extended HB stars at high metallicity. Finally, we discuss new empirical evidence that suggests that different evolutionary channels may be responsible for the production of EHB stars in the field and in clusters.

PaperStudio AI Chat

I'm your research assistant! Ask me anything about this paper.

Related papers

Commercial Disclosure
© 2023 Paper Studio™. All Rights Reserved.