Symmetry breaking and quantum correlations in finite systems: Studies of quantum dots and ultracold Bose gases and related nuclear and chemical methods

Constantine Yannouleas, Uzi Landman
Arxiv ID: 0711.0637Last updated: 12/24/2021
Investigations of emergent symmetry breaking phenomena occurring in small finite-size systems are reviewed, with a focus on the strongly correlated regime of electrons in two-dimensional semicoductor quantum dots and trapped ultracold bosonic atoms in harmonic traps. Throughout the review we emphasize universal aspects and similarities of symmetry breaking found in these systems, as well as in more traditional fields like nuclear physics and quantum chemistry, which are characterized by very different interparticle forces. A unified description of strongly correlated phenomena in finite systems of repelling particles (whether fermions or bosons) is presented through the development of a two-step method of symmetry breaking at the unrestricted Hartree-Fock level and of subsequent symmetry restoration via post Hartree-Fock projection techniques. Quantitative and qualitative aspects of the two-step method are treated and validated by exact diagonalization calculations. Strongly-correlated phenomena emerging from symmetry breaking include: (I) Chemical bonding, dissociation, and entanglement (at zero and finite magnetic fields) in quantum dot molecules and in pinned electron molecular dimers formed within a single anisotropic quantum dot. (II) Electron crystallization, with particle localization on the vertices of concentric polygonal rings, and formation of rotating electron molecules (REMs) in circular quantum dots. (III) At high magnetic fields, the REMs are described by parameter-free analytic wave functions, which are an alternative to the Laughlin and composite-fermion approaches. (IV) Crystalline phases of strongly repelling bosons. In rotating traps and in analogy with the REMs, such repelling bosons form rotating boson molecules (RBMs).

PaperStudio AI Chat

I'm your research assistant! Ask me anything about this paper.

Related papers

Commercial Disclosure
© 2023 Paper Studio™. All Rights Reserved.