/

The wave equation on static singular space-times

Eberhard Mayerhofer
Arxiv ID: 0802.1616Last updated: 1/12/2021
The first part of my thesis lays the foundations to generalized Lorentz geometry. The basic algebraic structure of finite-dimensional modules over the ring of generalized numbers is investigated. The motivation for this part of my thesis evolved from the main topic, the wave equation on singular space-times. The second and main part of my thesis is devoted to establishing a local existence and uniqueness theorem for the wave equation on singular space-times. The singular Lorentz metric subject to our discussion is modeled within the special algebra on manifolds in the sense of Colombeau. Inspired by an approach to generalized hyperbolicity of conical-space times due to Vickers and Wilson, we succeed in establishing certain energy estimates, which by a further elaborated equivalence of energy integrals and Sobolev norms allow us to prove existence and uniqueness of local generalized solutions of the wave equation with respect to a wide class of generalized metrics. The third part of my thesis treats three different point value resp. uniqueness questions in algebras of generalized functions

PaperStudio AI Chat

I'm your research assistant! Ask me anything about this paper.

Related papers

About
Pricing
Commercial Disclosure
Contact
© 2023 Paper Studio™. All Rights Reserved.