# On the Two Species Asymmetric Exclusion Process with Semi-Permeable Boundaries

Arvind Ayyer, Joel L. Lebowitz and Eugene R. Speer

Arxiv ID: 0807.2423•Last updated: 6/16/2020

We investigate the structure of the nonequilibrium stationary state (NESS) of
a system of first and second class particles, as well as vacancies (holes), on
L sites of a one-dimensional lattice in contact with first class particle
reservoirs at the boundary sites; these particles can enter at site 1, when it
is vacant, with rate alpha, and exit from site L with rate beta. Second class
particles can neither enter nor leave the system, so the boundaries are
semi-permeable. The internal dynamics are described by the usual totally
asymmetric exclusion process (TASEP) with second class particles. An exact
solution of the NESS was found by Arita. Here we describe two consequences of
the fact that the flux of second class particles is zero. First, there exist
(pinned and unpinned) fat shocks which determine the general structure of the
phase diagram and of the local measures; the latter describe the microscopic
structure of the system at different macroscopic points (in the limit L going
to infinity in terms of superpositions of extremal measures of the infinite
system. Second, the distribution of second class particles is given by an
equilibrium ensemble in fixed volume, or equivalently but more simply by a
pressure ensemble, in which the pair potential between neighboring particles
grows logarithmically with distance. We also point out an unexpected feature in
the microscopic structure of the NESS for finite L: if there are n second class
particles in the system then the distribution of first class particles
(respectively holes) on the first (respectively last) n sites is exchangeable.

#### PaperStudio AI Chat

I'm your research assistant! Ask me anything about this paper.