/

Dynamics of Asymptotically Hyperbolic Manifolds

Julie Rowlett
Arxiv ID: 0809.3472Last updated: 12/11/2020
We prove a dynamical wave trace formula for asymptotically hyperbolic (n+1) dimensional manifolds with negative (but not necessarily constant) sectional curvatures which equates the renormalized wave trace to the lengths of closed geodesics. A corollary of this dynamical trace formula is a dynamical resonance-wave trace formula for compact perturbations of convex co-compact hyperbolic manifolds which we use to prove a growth estimate for the length spectrum counting function. We next define a dynamical zeta function and prove its analyticity in a half plane. In our main result, we produce a prime orbit theorem for the geodesic flow. This is the first such result for manifolds which have neither constant curvature nor finite volume. As a corollary to the prime orbit theorem, using our dynamical resonance-wave trace formula, we show that the existence of pure point spectrum for the Laplacian on negatively curved compact perturbations of convex co-compact hyperbolic manifolds is related to the dynamics of the geodesic flow.

PaperStudio AI Chat

I'm your research assistant! Ask me anything about this paper.

Related papers

About
Pricing
Commercial Disclosure
Contact
© 2023 Paper Studio™. All Rights Reserved.