/

On the transport dimension of measures

Qinglan Xia, Anna Vershynina
Arxiv ID: 0905.3837Last updated: 9/2/2021
In this article, we define the transport dimension of probability measures on $\mathbb{R}^m$ using ramified optimal transportation theory. We show that the transport dimension of a probability measure is bounded above by the Minkowski dimension and below by the Hausdorff dimension of the measure. Moreover, we introduce a metric, called "the dimensional distance", on the space of probability measures on $\mathbb{R}^m$. This metric gives a geometric meaning to the transport dimension: with respect to this metric, we show that the transport dimension of a probability measure equals to the distance from it to any finite atomic probability measure.

PaperStudio AI Chat

I'm your research assistant! Ask me anything about this paper.

Related papers

About
Pricing
Commercial Disclosure
Contact
© 2023 Paper Studio™. All Rights Reserved.