# Finite-time Lagrangian transport analysis: Stable and unstable manifolds of hyperbolic trajectories and finite-time Lyapunov exponents

Michal Branicki and Stephen Wiggins

Arxiv ID: 0908.1129•Last updated: 1/29/2020

We consider issues associated with the Lagrangian characterisation of flow
structures arising in aperiodically time-dependent vector fields that are only
known on a finite time interval. A major motivation for the consideration of
this problem arises from the desire to study transport and mixing problems in
geophysical flows where the flow is obtained from a numerical solution, on a
finite space-time grid, of an appropriate partial differential equation model
for the velocity field. Of particular interest is the characterisation,
location, and evolution of "transport barriers" in the flow, i.e. material
curves and surfaces. We argue that a general theory of Lagrangian transport has
to account for the effects of transient flow phenomena which are not captured
by the infinite-time notions of hyperbolicity even for flows defined for all
time. Notions of finite-time hyperbolic trajectories, their finite time stable
and unstable manifolds, as well as finite-time Lyapunov exponent (FTLE) fields
and associated Lagrangian coherent structures have been the main tools for
characterizing transport barriers in the time-aperiodic situation. In this
paper we consider a variety of examples, some with explicit solutions, that
illustrate, in a concrete manner, the issues and phenomena that arise in the
setting of finite-time dynamical systems. Of particular significance for
geophysical applications is the notion of "flow transition" which occurs when
finite-time hyperbolicity is lost, or gained. The phenomena discovered and
analysed in our examples point the way to a variety of directions for rigorous
mathematical research in this rapidly developing, and important, new area of
dynamical systems theory.

#### PaperStudio AI Chat

I'm your research assistant! Ask me anything about this paper.