Temperature dependence of the magnetic Casimir-Polder interaction

H. Haakh, F. Intravaia, C. Henkel, S. Spagnolo, R. Passante, B. Power, F. Sols
Arxiv ID: 0910.3133Last updated: 8/6/2021
We analyze the magnetic dipole contribution to atom-surface dispersion forces. Unlike its electrical counterpart, it involves small transition frequencies that are comparable to thermal energy scales. A significant temperature dependence is found near surfaces with a nonzero DC conductivity, leading to a strong suppression of the dispersion force at T > 0. We use thermal response theory for the surface material and discuss both normal metals and superconductors. The asymptotes of the free energy of interaction and of the entropy are calculated analytically over a large range of distances. Near a superconductor, the onset of dissipation at the phase transition strongly changes the interaction, including a discontinuous entropy. We discuss the similarities with the Casimir interaction beween two surfaces and suggest that precision measurements of the atom-surface interaction may shed new light upon open questions around the temperature dependence of dispersion forces between lossy media.

PaperStudio AI Chat

I'm your research assistant! Ask me anything about this paper.

Related papers

Commercial Disclosure
© 2023 Paper Studio™. All Rights Reserved.