A note on the Schur multiplier of a nilpotent Lie algebra

Peyman Niroomand (Damghan University, Damghan, Iran) and Francesco G. Russo (Universita' degli Studi di Palermo, Palermo, Italy)
Arxiv ID: 1001.0176Last updated: 5/24/2021
For a nilpotent Lie algebra $L$ of dimension $n$ and dim$(L^2)=m$, we find the upper bound dim$(M(L))\leq {1/2}(n+m-2)(n-m-1)+1$, where $M(L)$ denotes the Schur multiplier of $L$. In case $m=1$ the equality holds if and only if $L\cong H(1)\oplus A$, where $A$ is an abelian Lie algebra of dimension $n-3$ and H(1) is the Heisenberg algebra of dimension 3.

PaperStudio AI Chat

I'm your research assistant! Ask me anything about this paper.

Related papers

Commercial Disclosure
© 2023 Paper Studio™. All Rights Reserved.