/

Floer cohomology of torus fibers and real lagrangians in Fano toric manifolds

Garrett Alston and Lino Amorim
Arxiv ID: 1003.3651Last updated: 6/27/2022
In this article, we consider the Floer cohomology (with $\Z_2$ coefficients) between torus fibers and the real Lagrangian in Fano toric manifolds. We first investigate the conditions under which the Floer cohomology is defined, and then develop a combinatorial description of the Floer complex based on the polytope of the toric manifold. We show that if the Floer cohomology is defined, and the Floer cohomology of the torus fiber is non-zero, then the Floer cohomology of the pair is non-zero. We use this result to develop some applications to non-displaceability and the minimum number of intersection points under Hamiltonian isotopy.

PaperStudio AI Chat

I'm your research assistant! Ask me anything about this paper.

Related papers

About
Pricing
Commercial Disclosure
Contact
© 2023 Paper Studio™. All Rights Reserved.