The symmetric and unimodal expansion of Eulerian polynomials via continued fractions

Heesung Shin and Jiang Zeng
Arxiv ID: 1005.4583Last updated: 3/22/2022
This paper was motivated by a conjecture of Br\"{a}nd\'{e}n (European J. Combin. \textbf{29} (2008), no.~2, 514--531) about the divisibility of the coefficients in an expansion of generalized Eulerian polynomials, which implies the symmetric and unimodal property of the Eulerian numbers. We show that such a formula with the conjectured property can be derived from the combinatorial theory of continued fractions. We also discuss an analogous expansion for the corresponding formula for derangements and prove a $(p,q)$-analogue of the fact that the (-1)-evaluation of the enumerator polynomials of permutations (resp. derangements) by the number of excedances gives rise to tangent numbers (resp. secant numbers). The $(p,q)$-analogue unifies and generalizes our recent results (European J. Combin. \textbf{31} (2010), no.~7, 1689--1705.) and that of Josuat-Verg\`es (European J. Combin. \textbf{31} (2010), no.~7, 1892--1906).

PaperStudio AI Chat

I'm your research assistant! Ask me anything about this paper.

Related papers

Commercial Disclosure
© 2023 Paper Studio™. All Rights Reserved.