/

Arithmetic completely regular codes

J. H. Koolen (USTC), W. S. Lee (POSTECH), W. J. Martin (WPI), H. Tanaka (Tohoku)
Arxiv ID: 0911.1826Last updated: 11/2/2021
In this paper, we explore completely regular codes in the Hamming graphs and related graphs. Experimental evidence suggests that many completely regular codes have the property that the eigenvalues of the code are in arithmetic progression. In order to better understand these "arithmetic completely regular codes", we focus on cartesian products of completely regular codes and products of their corresponding coset graphs in the additive case. Employing earlier results, we are then able to prove a theorem which nearly classifies these codes in the case where the graph admits a completely regular partition into such codes (e.g, the cosets of some additive completely regular code). Connections to the theory of distance-regular graphs are explored and several open questions are posed.

PaperStudio AI Chat

I'm your research assistant! Ask me anything about this paper.

Related papers

About
Pricing
Commercial Disclosure
Contact
© 2023 Paper Studio™. All Rights Reserved.