/

Fast Arithmetics in Artin-Schreier Towers over Finite Fields

Luca De Feo, Éric Schost
Arxiv ID: 1002.2594Last updated: 1/7/2020
An Artin-Schreier tower over the finite field F_p is a tower of field extensions generated by polynomials of the form X^p - X - a. Following Cantor and Couveignes, we give algorithms with quasi-linear time complexity for arithmetic operations in such towers. As an application, we present an implementation of Couveignes' algorithm for computing isogenies between elliptic curves using the p-torsion.

PaperStudio AI Chat

I'm your research assistant! Ask me anything about this paper.

Related papers

About
Pricing
Commercial Disclosure
Contact
© 2023 Paper Studio™. All Rights Reserved.